Short-range prediction of a heavy precipitation event by assimilating Chinese CINRAD-SA radar reflectivity data using complex cloud analysis
نویسندگان
چکیده
With the ARPS (Advanced Regional Prediction System) Data Analysis System (ADAS) and its complex cloud analysis scheme, the reflectivity data from a Chinese CINRAD-SA Doppler radar are used to analyze 3D cloud and hydrometeor fields and in-cloud temperature and moisture. Forecast experiments starting from such initial conditions are performed for a northern China heavy rainfall event to examine the impact of the reflectivity data and other conventional observations on short-range precipitation forecast. The full 3D cloud analysis mitigates the commonly known spin-up problem with precipitation forecast, resulting a significant improvement in precipitation forecast in the first 4 to 5 hours. In such a case, the position, timing and amount of precipitation are all accurately predicted. When the cloud analysis is used without in-cloud temperature adjustment, only the forecast of light precipitation within the first hour is improved. Additional analysis of surface and upper-air observations on the native ARPS grid, using the 1 degree real-time NCEP AVN analysis as the background, helps improve the location and intensity of rainfall forecasting slightly. Hourly accumulated rainfall estimated from radar reflectivity data is found to be less accurate than the model predicted precipitation when full cloud analysis is used.
منابع مشابه
Compared Radar Reflectivity with Heavy Rain Droplet Size Distribution
2. Chinese Academy of Meteorological Sciences, Beijing,10086 Abstract Using OTT-Parsivel Laser Particle Spectrometer at Nanjing in East China, several times heavy rain droplet scale & velocity spectral data aquatic from Mt. Lushan weather stations (elevation 1300meters) Compared to the plain deep convective clouds heavy precipitation, the rain droplet size distribution (DSD) with two elevation ...
متن کاملAssimilation of coastal Doppler radar data with the ARPS 3DVAR and cloud analysis for the prediction of Hurricane Ike (2008)
[1] The impact of radar data on the analysis and prediction of the structure, intensity, and track of landfalling Hurricane Ike (2008), at a cloud-resolving resolution, is examined. Radial velocity (Vr) and reflectivity (Z) data from coastal radars are assimilated over a 6-h period before Ike landfall, using the ARPS 3DVAR and cloud analysis package through 30-min assimilation cycles. Eighteen-...
متن کاملComparing and Merging Observation Data from Ka-Band Cloud Radar, C-Band Frequency-Modulated Continuous Wave Radar and Ceilometer Systems
Field experiment in South China was undertaken to improve understanding of cloud and precipitation properties. Measurements of the vertical structures of non-precipitating and precipitating clouds were obtained using passive and active remote sensing equipment: a Ka-band cloud radar (CR) system, a C-band frequency modulated continuous wave vertical pointing radar (CVPR), a microwave radiometer ...
متن کاملEnsemble Probabilistic Forecasts of a Tornadic Mesoscale Convective System from Ensemble Kalman Filter Analyses using WSR-88D and CASA Radar Data
This study examines the ability of a storm-scale numerical weather prediction (NWP) model to predict precipitation and mesovortices within a tornadic mesoscale convective system that occurred over Oklahoma on 8–9 May 2007, when the model is initialized from ensemble Kalman filter (EnKF) analyses including data from four Engineering Research Center for Collaborative Adaptive Sensing of the Atmos...
متن کاملThe Analysis and Prediction of the 8–9 May 2007 Oklahoma Tornadic Mesoscale Convective System by Assimilating WSR-88D and CASA Radar Data Using 3DVAR
The Advanced Regional Prediction System (ARPS) model is employed to perform high-resolution numerical simulations of a mesoscale convective system and associated cyclonic line-end vortex (LEV) that spawned several tornadoes in central Oklahoma on 8–9 May 2007. The simulation uses a 1000 km 3 1000 km domain with 2-km horizontal grid spacing. The ARPS three-dimensional variational data assimilati...
متن کامل